Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere
نویسندگان
چکیده
We propose two ways to compute the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. We use the so-called space of circles as mathematical background for this work. We present a fully robust implementation built upon existing generic algorithms provided by the cgal library. The e ciency of the implementation is established by benchmarks. Key-words: Computational Geometry, Convex hull, Delaunay Triangulation, Voronoi Diagram, Sphere, Space of Circles, Exact Geometric Computing, cgal This work was partially supported by the ANR (Agence Nationale de la Recherche) under the Triangles project of the Programme blanc ANR-07-BLAN-0319 http://www.inria.fr/geometrica/collaborations/triangles/. ∗ INRIA Sophia Antipolis Méditerranée [Email: {Manuel.Caroli, Pedro.Machado, Sebastien.Loriot, Monique.Teillaud}@sophia.inria.fr] † ETH Zürich, Switzerland [Email: [email protected]] in ria -0 04 05 47 8, v er si on 4 17 D ec 2 00 9 Triangulation de Delaunay robuste et e cace, pour des points sur la sphère ou proche d'elle Résumé : Nous proposons deux façons de calculer la triangulation de Delaunay d'un ensemble de points qui appartiennent soit à la sphère, soit à son voisinage. Ces deux méthodes reposent sur l'algorithme incrémental classique, tel qu'il a été créé à l'origine pour calculer les triangulations de Delaunay planaires. Le cadre mathématique classique justi ant cette approche est rappelé, à l'aide de l'espace des cercles. Ces deux approches ont été implantées de façon robuste en s'appuyant sur les algorithmes génériques fournis par la bibliothèque CGAL. Des tests comparatifs montrent l'e cacité de nos implantations sur des jeux de données de taille variée. Mots-clés : Géométrie algorithmique, Enveloppe convexe, Triangulation de Delaunay, Diagramme de Voronoï, Sphère, Espace des cercles, Calcul géométrique exacte, cgal in ria -0 04 05 47 8, v er si on 4 17 D ec 2 00 9 Triangulation on the sphere 3
منابع مشابه
An efficient implementation of Delaunay triangulations in medium dimensions
We propose a new C++ implementation of the well-known incremental algorithm for the construction of Delaunay triangulations in any dimension. Our implementation follows the exact computing paradigm and is fully robust. Extensive comparisons have shown that our implementation outperforms the best currently available codes for convex hulls and Delaunay triangulations, and that it can be used for ...
متن کاملMany neighborly inscribed polytopes and Delaunay triangulations
We present a very simple explicit technique to generate a large family of point configurations with neighborly Delaunay triangulations. This proves that there are superexponentially many combinatorially distinct neighborly d-polytopes with n vertices that admit realizations inscribed on the sphere. These are the first examples of inscribable neighborly polytopes that are not cyclic polytopes, a...
متن کاملFully Dynamic Constrained Delaunay Triangulations
We present algorithms for the efficient insertion and removal of constraints in Delaunay Triangulations. Constraints are considered to be points or any kind of polygonal lines. Degenerations such as edge overlapping, self-intersections or duplicated points are allowed and are automatically detected and fixed on line. As a result, a fully Dynamic Constrained Delaunay Triangulation is achieved, a...
متن کاملHyperbolic Delaunay triangulations and Voronoi diagrams made practical
We show how to compute Delaunay triangulations and Voronoi diagrams of a set of points in hyperbolic space in a very simple way. While the algorithm follows from [7], we elaborate on arithmetic issues, observing that only rational computations are needed. This allows an exact and efficient implementation.
متن کاملPii: S0925-7721(98)00035-2
This paper studies the point location problem in Delaunay triangulations without preprocessing and additional storage. The proposed procedure finds the query point by simply “walking through” the triangulation, after selecting a “good starting point” by random sampling. The analysis generalizes and extends a recent result for d = 2 dimensions by proving this procedure takes expected time close ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010